伤城文章网 > 其它课程 > 初中列方程解应用题(行程问题)专题

初中列方程解应用题(行程问题)专题


实用文档

初中列方程解应用题(行程问题)专题

行程问题是指与路程、速度、时间这三个量有关的问题。我们常用的基本公 式是:
路程=速度×时间;速度=路程÷时间;时间=路程÷速度. 行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不 下。原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的 习题面前都会显得得心应手。下面我们将行程问题归归类,由易到难,逐步剖析。

1. 单人单程:

例 1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速

度从 80km/ h 提高到100km/ h ,运行时间缩短了 3h 。甲,乙两城市间的路程是多

少?

【分析】如果设甲,乙两城市间的路程为 x km,那么列车在两城市间提速前

的运行时间为 x h ,提速后的运行时间为 x h .

80

100

【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间.

【列出方程】 x ? x ? 3 . 80 100

例 2:某铁路桥长 1000 m ,现有一列火车从桥上通过,测得该火车从开始 上桥到完全过桥共用了 1 min ,整列火车完全在桥上的时间共 40s 。求火车的速 度和长度。
【分析】如果设火车的速度为 x m / s ,火车的长度为 y m ,用线段表示大桥
和火车的长度,根据题意可画出如下示意图: y
1000

60x 1000

y

40x

【等量关系式】火车1min 行驶的路程=桥长+火车长; 火车 40s 行驶的路程=桥长-火车长

【列出方程组】

?60 x ??40x

? ?

1000 100

? ?0

y y

文案大全

实用文档
举一反三: 1.小明家和学校相距15km。小明从家出发到学校,小明先步行到公共汽车 站,步行的速度为 60 m / min ,再乘公共汽车到学校,发现比步行的时间缩短了 20min ,已知公共汽车的速度为 40km/ h ,求小明从家到学校用了多长时间。
2.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连 云港至徐州的最短客运时间由现在的 2 小时 18 分钟缩短为 36 分钟,其速度每 小时将提高 260km.求提速后的火车速度。(精确到1km/ h )
文案大全

实用文档
3.徐州至上海的铁路里程为 650km,从徐州乘”C “字头列车 A,”D”字头列 车 B 都可直达上海,已知 A 车的速度为 B 车的 2 倍,且行驶的时间比 B 车少 2.5h . 求 A 车的速度及行驶时间。(同学们可能会认为这是双人行程问题,其实这题的 类型可归结于例 1 的类型,把 B 车的速度看成是 A 提速后的速度,是不是也可 看成单人单程的问题呀!)
4.一列匀速前进的火车用 15 秒的时间通过了一个长 300 米的隧道(即从车 头进入隧道到车尾离开隧道)。又知其间在隧道顶部的一盏固定的灯发出的一束 光垂直照射火车 2.5 秒,(光速 ? 3?108 m / s )
1)求这列火车的长度 2)如果这列火车用 25 秒的时间通过了另一个隧道,求这个隧道的长
文案大全

实用文档

2.单人双程(等量关系式:来时的路程=回时的路程):

例 1:某校组织学生乘汽车去自然保护区野营,先以 60km/ h 的速度走平路,

后又以 30km/ h 的速度爬坡,共用了 6.5h ;返回时汽车以 40km/ h 的速度下坡,又

以 50km/ h 的速度走平路,共用了 6h .学校距自然保护区有多远。

【分析】如果设学校距自然保护区为 x km,由题目条件:去时用了 6.5h ,则

有些同学会认为总的速度为 x km/ h ,然后用去时走平路的速度+去时爬坡的速 6.5

度=总的速度,得出方程 60 ? 30 ? x ,这种解法是错误的,因为速度是不能相 6.5

加的。不妨设平路的长度为 x km,坡路的长度为 y km,则去时走平路用了 x h , 60

去时爬坡用了 y h ,而去时总共用了 6.5h ,这时,时间是可以相加的;回来时 30

汽车下坡用了 y h ,回来时走平路用了 x ,而回来时总共用了 6h .则学校到自

40

50

然保护区的距离为 (x ? y)km。

【等量关系式】去时走平路用的时间+去时爬坡用的时间=去时用的总时间 回来时走平路用的时间+回来时爬坡用的时间=回来时用的 总时间

x ? y ? 6.5 【列出方程组】 60 30
x ? y ?6 50 40
注:单人双程的行程问题抓住来时的路程=回时的路程、路程=速度×时间, 再把单人单程的行程问题练练熟就 ok 了,题型跟单人单程的题型差不多,把上 面的例题弄懂,这里就不多做练习了。

3.双人行程:
(Ⅰ)单块应用:只单个应用同向而行或背向而行或相向而行或追
击问题。
1)同时同地同向而行:A,B 两事物同时同地沿同一个方向行驶 例:甲车的速度为 60km/ h ,乙车的速度为 80km/ h ,两车同时同地出发, 同向而行。经过多少时间两车相距 280km。 【分析】如果设经过 x h 后两车相距 280km,则甲走的路程为 60xkm,乙走 的路程为 80xkm,根据题意可画出如下示意图:
80x km 乙
文案大全

实用文档



60x km

280km

【等量关系式】甲车行驶的距离+280=乙车行驶的距离

【列出方程】 60x ? 280 ? 280x

2)同时同地背向而行:A,B 两事物同时同地沿相反方向行驶 例:甲车的速度为 60km/ h ,乙车的速度为 80km/ h ,两车同时同地出发, 背向而行。经过多少时间两车相距 280km。 【分析】如果设经过 x h 后两车相距 280km,则甲走的路程为 60xkm,乙走 的路程为 80xkm,根据题意可画出如下示意图:
甲乙

60x km

80x km

280 km 【等量关系式】甲车行驶的距离+乙车行驶的距离=280 【列出方程】 60x ? 80x ? 280

3)同时相向而行(相遇问题): 例:甲,乙两人在相距10km的 A,B 两地相向而行,乙的速度是甲的速度的 2 倍,两人同时处发1.5h 后相遇,求甲,乙两人的速度。 【分析】如果设甲的速度为 xkm/ h ,则乙的速度为 2xkm/ h ,甲走过的路程 为1.5x km,乙走过的路程为1.5? 2x km,根据题意可画出如下示意图:



1.5x km

1.5×2x km

A

10 km

280 km

【等量关系式】甲车行驶的距离+乙车行驶的距离=10

【列出方程】1.5x ?1.5? 2x ? 10

乙 B

4)追及问题: 例:一对学生从学校步行去博物馆,他们以 5km/ h 的速度行进 24min 后,一 名教师骑自行车以15km/ h 的速度按原路追赶学生队伍。这名教师从出发到途中 与学生队伍会合共用了多少时间?
【分析】如果设这名教师从出发到途中与学生队伍会合共用了 x h ,则教师 走过的路程为15x km,学生走过的路程为教师出发前走过的路程加上教师出发
后走过的路程,而学生在教师出发前走过的路程为 5? 24 km ,学生在教师出发后 60
走过的路程为 5x km,又由于教师走过的路程等于学生走过的路程。根据题意可 画出如下示意图:

学生

5? 24 km 60

5x km

教师

15x km

【等量关系式】教师走过的路程=学生在教师出发前走过的路程+学生在教

文案大全

实用文档

师出发后走过的路程 【列出方程】15x ? 5? 24 ? 5x
60

5)不同时同地同向而行(与追击问题相似): 例:甲,乙两人都从 A 地出发到 B 地,甲出发1h 后乙才从 A 地出发,乙出 发 3h 后甲,乙两人同时到达 B 地,已知乙的速度为 50km/ h ,问,甲的速度为多 少?
【分析】如果设甲的速度为 x km/ h ,则乙出发前甲走过的路程为 x km,乙 出发后甲走过的路程为 3x km,甲走过的路程等于乙出发前甲走过的路程加上乙 出发后甲走过的路程,而乙走过的路程为 50? 3km,甲走过的路程等于乙走过的 路程。根据题意可画出如下示意图:



x km

3x km



50×3 km

【等量关系式】乙走过的路程=乙出发前甲走过的路程加上乙出发后甲走过 的路程
【列出方程】 50?3 ? x ? 3x

6)不同时相向而行 例:甲,乙两站相距 448km,一列慢车从甲站出发,速度为 60km/ h ;一列 快车从乙站出发,速度为100km/ h 。两车相向而行,慢车先出发 32min ,快车开 出后多少时间两车相遇? 【分析】如果设快车开出后 x h 两车相遇,则慢车走过的路程为
60x ? 60 ? 32 km,快车走过的路程为 100 x km。根据题意可画出如下示意图: 60

慢车 60 ? 32

60x

60

100x

快车

448km 【等量关系式】总路程=快车出发前慢车走过的路程+快车出发后慢车走过
的路程+快车走过的路程
【列出方程】 448 ? 60? 32 ? 60x ?100x 60
注:涉及此类问题的还有同时不同地同向而行、不同时不同地背向而行、不 同时不同地同向而行、不同时不同地背向而行,与上面解法类似,只要画出示意 图问题就会迎刃而解,就不再一一给出解答了,此类问题会在后面练习中给出习 题。

文案大全

实用文档

(Ⅱ)结合应用:把同向而行、背向而行、相向而行、追击问题

两两结合起来应用。
1) 相向而行+背向而行 例:A,B 两地相距 36km,小明从 A 地骑自行车到 B 地,小丽从 B 地骑自 行车到 A 地,两人同时出发相向而行,经过1h 后两人相遇;再过 0.5h ,小明余 下的路程是小丽余下的路程的 2 倍。小明和小丽骑车的速度各是多少?
【分析】如果设小明骑车的速度为 x ,小丽骑车的速度为 y ,相遇前小明走

过的路程为 x ,小丽走过的路程为 y ;相遇后两人背向而行,小明走过的路程为

0.5x ,小丽走过的路程为 0.5y 。根据题意可画出如下示意图:

小明

小丽

相遇前

x

y

A

B

36km

x-0.5y 0.5y

0.5x

小丽

y-0.5x 小明

【等量关系式】相遇前小明走过的路程+相遇前小丽走过的路程=总路程 相遇后小明余下的路程=2×相遇后小丽余下的路程

【列出方程组】

?x

? ?

y

? ?

y ? 36 0.5x ?

2

?

(x

?

0.5

y)

2)同向而行+相向而行 例:一个自行车队进行训练,训练时所有队员都以 35 千米/时的速度前进, 突然,1 号队员以 45 千米/时的速度独自行进,行进 10 千米后掉转车头,仍以 45 千米/时的速度往回骑,直到与其他队员会合。1 号队员从离队开始到与其他 队员重新会合,经过了多长时间? 【分析】由题意“1 号队员以 45 千米/时的速度独自行进,行进 10 千米后
掉转车头”可知 1 号队员从离队到调转车头前的时间为 10 h ,不妨设 1 号队员从 45
调转车头到与其他队员重新回合的时间为 x h 。根据题意可画出如下示意图:

所有队员 1 号队员

35? 10 45

35x 45x

10km 【等量关系式】1 号队员从离队到调转车头这段时间所有队员走的路程+1 号 队员从调转车头到与其他队员重新回合这段时间内所有队员走的路程+1 号队员 从调转车头到与其他队员重新回合这段时间内 1 号队员走的路程=10。

文案大全

实用文档
【列出方程】 35? 10 ? 35x ? 45x ? 10 45
注:涉及此类问题的还有同向而行+相背而行、追及+同向而行、追及+相背 而行、追及+相向而行,只要把它们分成单个类型,按照题意一步一步求解,这 里就不一一举例了,此类问题会在后面练习中给出习题。
举一反三: 1.甲,乙两人从楼底爬楼梯到楼顶,甲平均每分钟爬楼梯 40 级,乙平均每分 钟爬楼梯 50 级,甲先出发 2min ,结果两人同时到达楼顶。问从楼底到楼顶共 有楼梯多少级?
2 甲,乙两人在相距100m的两地相背而行,30min 后甲,乙两人相距 4km, 已知甲的速度为 60m/ min ,求乙的速度。
文案大全

实用文档
3.小彬和小明每天早晨坚持跑步,小彬每秒跑 4 米,小明每秒跑 6 米,(1 如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?(2)如果 小明站在百米跑道的起点处,小彬站在他前面 10 米处,两人同时同向起跑,几 秒后小明能追上小彬。
文案大全

实用文档
4.一队学生去校外进行军事野营训练。他们以 5km/ h 的速度行进,走了 18min 的时候,学校要将一个紧急通知传给队长。通讯员从学校出发,骑自行车 以14km/ h 的速度按原路追上去,队长出发后经过多少时间接到通知?
5.两辆汽车同时从 A 地出发,沿一条公路开往 B 地。甲车比乙车每小时多 行 8 千米,甲车比乙车早 40 分钟到达途中的 C 地,当乙车到达 C 地时,甲车 正好到达 B 地。已知 C 至 B 地的路程是 40 千米,求乙车每小时行多少 km?
文案大全

实用文档
6.A,B 两地相距 450km,甲,乙两车分别从 A,B 两地同时出发,相向而 行。已知甲车速度为120km/ h ,乙车速度为 80km/ h ,经过多少小时两车相距 50k m 。
7.甲乙两车同时从 A 地出发,在相距 900 千米的 AB 两地间不断往返行驶。 已知甲车的速度是每小时 25 千米,乙车的速度是每小时 20 千米。请问: (1)甲车第一次从后面追上乙车是在出发后多长时间? (2)甲车在第一次从后面追上乙车之后又经过多长时间第二次从后面追上乙 车? (3)甲乙两车第二次迎面相遇是在出发后多长时间?
文案大全

实用文档

4.行程问题中的工程问题:

乍一看,题目中就时间已知,速度、路程都未知,此类问题同学们做起来觉

得无从下手。其实只要把路程看做单位“1”(至于为什么,结合以下例题讲解),

这就相当于把行程问题转化为工程问题。

例:甲开汽车从 A 地到 B 地需要 6h ,乙开汽车从 A 地到 B 地需要 4h ,如

果甲,乙两人分别从 A,B 两地出发,相向而行,经过多少小时后两车相遇。

【分析】题目中就时间已知,速度、路程都未知,有些同学想如果知道 A 与

B 的距离,就可以得出 A 与 B 的速度,那么问题就迎刃而解了,可是路程未知

呀!是不是路程无论取什么值,都经过相同的时间两车相遇呢?为此,我们不妨

设 A 与 B 的距离为 a ,经过 xh 后两车相遇。我们可以立马得出关系式:

a ? x ? a ? x ? a ,可以把两边的 a 消去,得到方程 x ? x ? 1,立马得出 x ? 12 。

64

64

5

说明路程无论取什么值,都经过相同的时间两车相遇。遇到类似问题,我们往往

把路程看做单位“1”。

举一反三:

1.甲从 A 地到 B 地需要 3h ,乙从 A 地到 B 地需要 4h ,甲,乙两人同时从 A 地出发,甲先到达 B 地后掉头向 A 方向行驶,问,甲,乙两人从 A 地同时出发 到两人相遇需要多长时间?

2.甲开汽车从 A 地到 B 地需 2h ,乙骑摩托车从 B 地到 A 地需 3h 。如果乙 骑摩托车从 B 地出发往 A 地,1h 后甲开汽车从 A 地往 B 地,那么甲出发多少时 间与乙相遇?
文案大全

实用文档

5.环形跑道问题:
环形跑道问题也是形成问题的一种,环形跑道问题就是闭路线上的追击问 题。在环形问题中,若两人所走同时同地出发,同向而行,当第一次相遇时,两 人所走路程差为一周长;相向而行,第一次相遇时,两人所走路程和为一周长。

例 1:运动场跑道周长 400m ,小红跑步的速度是爷爷的 5 倍,他们从同一 3
地点沿跑道的同一方向同时出发, 5 min 后小红第一次追上了爷爷。你知道他们 的跑步速度吗?那是不是再过 5 min 两人第二次相遇呢?如果不是,请说明理由; 如果是,用方程式表示。
【分析】不妨设爷爷的跑步速度为 x m / min ,则小红的跑步速度为 5 x m / min 3
【等量关系式】小红跑的路程—爷爷跑的路程=400m
【列出方程】 5 ? 5 x ? 5x ? 400 3
注:再过 5 min 两人第二次相遇,用上面那个方程式就可以表示出来。

例 2:甲,乙两车分别以均匀的速度在周长为 600m 的圆形轨道上运动。甲 车的速度较快,当两车反向运动时,每15s 相遇一次;当两车同向运动时,每1min 相遇一次,求两车的速度。

【分析】设甲,乙两车的速度分别为 x m / s 和 y m / s 。

【等量关系式】同向而行甲所走的路程-同向而行乙所走的路程=一周长 反向而行甲所走的路程+同向而行乙所走的路程=一周长

【列出方程组】

?15x ??60x

?15y ? 600 ? 60y ? 600

举一反三:
1.甲,乙两人在周长 400m 长的环形跑道上竞走,已知乙的速度是 80m / min ,
文案大全

实用文档
甲的速度是乙的 1.25 倍,乙在甲前100m。问多少分钟后,甲可以追上乙?
2.甲,乙两人都以不变的速度在环形路上跑步,相向而行,每隔 2 min 相遇 一次;同向而行,每隔 6 min 相遇一次。已知甲比乙跑得快,求甲,乙两人每分钟 个跑几圈?
6.水流问题
一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型, 它的特点主要是考虑水速在逆行和顺行中的不同作用。基本概念和公式有:
船速:船在静水中航行的速度 水速:水流动的速度 顺水速度:船顺流航行的速度 逆水速度:船逆流航行的速度 顺速=船速+水速 逆速=船速-水速 船行速度=(顺水速度+ 逆流速度)÷2
文案大全

实用文档

流水速度=(顺流速度—逆流速度)÷2 路程=顺流速度× 顺流航行所需时间 路程=逆流速度×逆流航行所需时间

例 1:某船在80km的航道上航行,顺流航行需1.6h ,逆流航行需 2h 。求船 在静水中航行的速度和水流的速度。

【分析】设船在静水中航行的速度和水流的速度分别为 x 和 y ,顺流的速度

为 80 km/ h ,逆流的速度为 80 km/ h ,再利用上面的公式。

1.6

2

【等量关系式】顺速=船速+水速

逆速=船速-水速

80 ? x ? y 【列出方程】 1.6
80 ? x ? y 2

例 2:甲,乙两艘货船,甲船在前 30 千米处逆水而行,乙船在后追赶。甲 乙两人的静水速度分别是 36 千米/小时和 42 千米/小时,水流速度是 4 千米/小时, 求甲船行多少时间被乙船追上?
【分析】已知甲乙两人的静水速度和水流速度,可以分别求出甲乙两人的逆 水速度,分别为 32 千米/小时和 38 千米/小时。不妨设甲船行 x 小时后被乙船追 上,再根据公式路程=逆流速度×逆流航行所需时间,则甲行驶的路程为 32x 千米, 乙行驶的路程为 38x 千米,这样就可以把此问题转化为追击问题。
【等量关系式】甲行驶的路程+30=乙行驶的路程 【列出方程】 32x ? 30 ? 38x

举一反三:
1.一艘小船逆水而行,到 A 地时随声带的一个重要的水壶掉入水中随波而 下。半小时之后船行到 B 地,发现丢失了水壶,立即返回寻找,终于在距离 A 地 5 千米的地方追上水壶,然后又用了 10 分钟返回 A 地,求从 B 地顺水行到 A 地时用了多少分钟?

小结:行程问题主要把握住公式路程=速度×时间,其他公式不需要背诵, 只要按照题目要求画出示意图,题目的条件就会一目了然,做起来得心应手!
文案大全

实用文档 文案大全


搜索更多“初中列方程解应用题(行程问题)专题”

网站地图

All rights reserved Powered by 伤城文章网 5xts.com

copyright ©right 2010-2021。
伤城文章网内容来自网络,如有侵犯请联系客服。zhit325@126.com