伤城文章网 >  > 新人教B版必修一2.4.2《求函数零点近似解的一种计算方法--二分法》ppt课件_图文

新人教B版必修一2.4.2《求函数零点近似解的一种计算方法--二分法》ppt课件_图文


2.4.2 用二分法 求函数零点 的近似解
1
2019/4/17

温故知新

判断零点存在的方法 勘根定理

若函数f(x)在闭区间[a,b]上的图像是连续曲线, 并且 在闭区间[a,b]端点的函数值符号相反,即 f(a)f(b)<0,则f(x)在(a,b)上至少有一个零点, 即方程f(x)=0在(a,b)上至少有一个实数解。 说明:1.方程f(x)=0在区间(a,b)内有奇数个解, 则f(a)f(b)<0;方程在区间(a,b)内有偶数个解, 则f(a)f(b)>0. 2.若方程f(x)=0在区间(a,b)只有一解,则f(a)f(b)<0.
3.如果函数图象通过零点时穿过X轴,这样的零点为变号 零点,如果没有穿过X轴的,这样的零点为不变号零点
2019/4/17

问题 1 .不解方程,如何求方程 x2-2x-1=0 的 一个正的近似解(精确到0.1)?
画出y=x2-2x-1的图象(如图)
由图可知:方程x2-2x-1=0 的一个根x1在区间(2,3)内, 另一个根x2在区间(-1,0)内.

y

y=x2-2x-1

x
-1 0 1 2 3

结论:借助函数 f(x)= x2-2x-1的图象,我们
发现 f(2)=-1<0, f(3)=2>0,这表明此函数图象 在区间(2, 3)上穿过x轴一次,可得出方程在区 间(2,3)上有惟一解.
2019/4/17

思考:如何进一步有效缩小根所在的区间?

2 2 2 2
2

+ + 2.5 + 2.5 + + + +

3

2.25

-

3 3 3
2.25 2

y

y=x2-2x-1

+ 2.25 2.375 2.5

- -

-1 0 1 2 3

x

2.25 2.375 2.5 2.4375

- -

2
2.5

2.5

3

+ +

3

由于2.375与2.4375的近似值都为 2.4,停止操作,所求近似解为2.4。
2019/4/17

简述上述求方程近似解的过程 解:设f (x)=x2-2x-1,x1为其正的零点 x1∈(2,3) ∵ f(2)<0, f(3)>0 ∵f(2.5)=0.25>0 x1∈(2,2.5) ∴f(2)<0, f(2.5)>0 ∵ f(2.25)= -0.4375<0 x1∈(2.25,2.5) ∴ f(2.25)<0, f(2.5)>0 ∵ f(2.375)= -0.2351<0 x1∈(2.375,2.5) ∴ f(2.375)<0, f(2.5)>0 ∵ f(2.4375)= 0.105>0 x1∈(2.375,2.4375) ∴ f(2.375)<0, f(2.4375)>0 ∵ 2.375与2.4375的近似值都是2.4, ∴x1≈2.4
2019/4/17

问题2.如何描述二分法?
对于在区间[a,b]上连续不断,且f(a) · f(b)<0 的函数 y=f(x) ,通过不断地把函数 f(x) 的零点所 在的区间一分为二,使区间的两端点逐步逼近 零点,进而得到零点(或对应方程的根)近似解的 方法叫做二分法.

问题3:二分法实质是什么?
用二分法求方程的近似解,实质上就是通 过“取中点”的方法,运用“逼近”思想逐步 缩小零点所在的区间。

2019/4/17

问题3:能否给出二分法求解方程f(x)=0(或 g(x)=h(x))近似解的基本步骤?

2019/4/17

1.利用y=f(x)的图象,或函数赋值法(即验证 f (a)?f(b)<0 ),判断近似解所在的区间(a, b). 2 .“二分”解所在的区间,即取区间 (a, b) a?b 的中点 x ?
1

2

3.计算f (x1): (1)若f (x1)=0,则x0=x1; (2)若f (a)?f(x1)<0,则令b=x1 (此时x0∈(a, x1)); (3)若f (b)?f(x1)<0,则令a=x1 (此时x0∈(x1,b)).
; ;

2019/4/17

4.判断是否达到给定的精确度,若达到,则 得出近似解;若未达到,则重复步骤2~4.

例题

求函数f(x)=x3+3x-1的一个正 实数零点(精确到0.1)

2019/4/17

解:由于f(0)<0,f(1)>0, 则[0,1] 可以作为 初始区间.

用二分法逐步计算,列表如下:
端点或中点横坐 标 a0=0,b0=0 x0=0.5 计算端点或中点的 函数值 f(0)=-1,f(1)=3 f(x0)=0.625>0 确定区间

[0,1] [0,0.5]

x1=0.25
x2=0.375 x2019/4/17 3=0.3125

f(x1)=-0.2343<0
f(x2)=0.1778>0 f(x3)=-0.03198<0

[0.25,0.5]
[0.25,0.375] [0.3125,0.375]

端点或中点横 计算端点或中点 坐标 的函数值
x4=0.34375 x5=0.328125 x6=0.3203125 f(x4)=0.07187>0 f(x5)=0.0197>0 f(x6)=-0.006198<0

确定区间

[0.3125,0.343755]
[0.3125,0. 328125]

[0.3203125, 0.328125]

x7=0.32421875 f(x7)=-0.006737<0
2019/4/17

[0.3203125,0.324 21875]

由上表的计算可知,区间[0.3125,
0.343755]的左、右端点精确到0.1所取的近

似值都是0.3,因此0.3就是所取函数的精 确到0.1的一个正实数零点的近似值,只需 计算5次即可得到。 同理,所取函数的精确到0.01的一个正 实数零点的近似值为0.32,计算8次可以得
2019/4/17

到。

练习1: 下列函数的图象与x轴均有交点,其中不能 用二分法求其零点的是 (C ) y y y y
0

x

0

x

0

x

0

x

问题5:请思考利用二分法求函数零点的条件 是什么? 1. 函数y=f (x)在[a,b]上连续不断. 2. y=f (x)满足 f (a) · f (b)<0,则在(a,b)内必有零点.
2019/4/17

课堂小结
1. 理解二分法是一种求方程近似解的常用 方法. 2. 能借助计算机 ( 器 ) 用二分法求方程的近 似解,体会程序化的思想即算法思想. 3. 进一步认识数学来源于生活,又应用于 生活. 4. 感悟重要的数学思想:等价转化、函数 与方程、数形结合、分类讨论以及无限逼 近的思想.
2019/4/17

2019/4/17


搜索更多“新人教B版必修一2.4.2《求函数零点近似解的一种计算方法--二分法》ppt课件_图文”

学习资料共享网 | 兰溪范文 | 伤城文章网 | 省心范文网 | 酷我资料网 | 海文库 | 学习资料共享网 | 兰溪范文 | 伤城文章网 | 省心范文网 | 学习资料共享网 | 兰溪范文 | 伤城文章网 | 省心范文网 | 酷我资料网 | 海文库 | 学习资料共享网 | 兰溪范文 | 伤城文章网 | 省心范文网 | 学习资料共享网 | 兰溪范文 | 伤城文章网 | 省心范文网 | 酷我资料网 | 海文库 | 学习资料共享网 | 兰溪范文 | 伤城文章网 | 省心范文网 |

热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点| 热点|
网站地图

All rights reserved Powered by 伤城文章网 5xts.com

copyright ©right 2010-2021。
伤城文章网内容来自网络,如有侵犯请联系客服。3088529994@qq.com