伤城文章网 > 数学 > 2013-2014年焦作市高三第一次模拟考试数学(文)试卷

2013-2014年焦作市高三第一次模拟考试数学(文)试卷


2013-2014 年焦作市高三第一次模拟考试 数学(文)试卷
一、选择题:本题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项 中只有一个选项是符合题目要求的。
, 2, 3} , N ? {2, 3, 4} ,则( 1.若集合 M ? {1
A. M ? N B. N ? M ) D. M ? N ? ?1,4,5? )

C. M ? N ? ?2,3?

2.已知 i 是虚数单位,若复数 (1 ? ai)(2 ? i) 是纯虚数,则实数 a 等于( A. 2 B.

1 2

C. ?

1 2

D. ?2 )

3.已知平面向量 a , b 满足 a ? 1 , b ? 2 ,且 (a ? b) ? a ,则 a 与 b 的夹角是( A.

5? 6

B.

2? 3

C.

? 3

D. )

? 6

4.“ k ? 1 ”是“直线 x ? y ? k ? 0 与圆 x 2 ? y 2 ? 1相交”的( A.充分不必要条件 C.充分必要条件 B.必要不充分条件 D.既不充分也不必要条件

5.已知等比数列 ?an ? 中, 各项都是正数, 且 a1 , a3 , 则 2a2 成等差数列, A. 1 ? 2 B. 1 ? 2 C. 3 ? 2 2 D. 3 ? 2 2

1 2

a8 ? a9 等于 ( a6 ? a7



?x ? y ? 3 ? 0 ? 6. 已知 M ( x, y ) 是区域 ? x ? y ? 1 ? 0 内的任意一点,则 z ? 2 x ? y 的最大值为( ?x ? 2 ?
A.-1 B.0 C.4 D.5 )



7.执行如图所示的程序框图,若输入 x ? 3 ,则输出 k 的值是( A.3 B.4 C. 5 D.6

8.已知函数 f ( x) ? ? 范围是( )

?e x ? a , x ? 0 ?2 x ? 1, x ? 0

(a?R ) ,若函数 f ( x ) 在 R 上有两个零点,则 a 的取值

A. ? ??, ?1?

B. ? ??,0?

C. ? ?1,0?

D. ? ?1,0?

1

9.函数 f ( x) ? sin(? x ? ? )( x ? R) (? ? 0, ? ?

?
2

) 的部分图像如图所示,如果 x1 , x2 ?


(?

? ?
1 2

, ) ,且 f ( x1 ) ? f ( x2 ) ,则 f ( x1 ? x2 ) ? ( 6 3
B.

A.

2 2

C.

3 2

D.1

10. 已知椭圆

x2 y 2 x2 y 2 ? ? 1( a ? b ? 0) ? ? 1(m ? 0, n ? 0) 有相同的焦点 与双曲线 a 2 b2 m2 n 2

? ?c,0? 和 ? c, 0? ,若 c 是 a 与 m 的等比中项, n2 是 2m2 与 c2 的等差中项,则椭圆的离心率
为( A. ) B.

1 2

1 3

C.

2 2

D.

3 3

11.如图,在透明塑料制成的长方体 ABCD ? A 1B 1C1D 1 容器内灌进一些水,将容器底面一边

BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:
①水的部分始终呈棱柱状; ②水面四边形 EFGH 的面积不改变;

③棱 A1D1 始终与水面 EFGH 平行; ④当 E ? AA1 , F ? BB1 时, AE ? BF 是定值. 其中所有正确的命题的序号是( A.①②③ B.①③ ) D.①③④

C.②④

12.已知 f ( x ) 是定义在 R 上的偶函数, 对任意 x ? R , 都有 f (2 ? x) ? ? f ( x) , 且当 x ??0,1?
2 x ) ?3 ?0 在 ? ?1,5? 上有 5 个根 xi (i ? 1, 2,3, 4,5) 则 时, f ( x) ? ? x ? 1,若 a ? f (x ) ? ?bf (
2

x1 ? x2 ? x3 ? x4 ? x5 的值为(
A.7 B.8

) C.9 D.10

二、填空题:本大题共 4 小题,每小题 5 分,共 20 分。
13.已知一个空间几何体的三视图所示,其中主视图,左视图都是由半圆和矩形组成,根据 图中标出的尺寸,可得这个几何体的体积是 . .

14.设等差数列 ?an ? 的前 n 项和为 Sn , 若 a1 ? ?11 , 则当 Sn 取最小值是, a2 ? ?9 , n? 15. 《中华人民共和国道路交通安全法》 规定: 车辆驾驶员血液酒精浓度在 20 ? 80mg /100ml

(不含 80)之间,属于酒后驾车;血液酒精浓度在 80mg /100ml (含 80)以上时,属醉酒

2

驾车.据有关调查,在一周内,某地区查处酒后驾车和醉酒驾车共 500 人,如图是对这 500 人血液中酒精含量分成 ? 20,30? 、 ?30,40? 、 ? 40,50? 、 ?50,60? 、 ?60,70? 、 ?70,80? 、

?80,90? 、 ?90,100? 共
约为 .

8 组进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数

x2 y 2 ? ? 1( x ? 0, y ? 0) 上的点,F1 ,F2 是椭圆的焦点,O 是坐标原点, 16 8 ???? ? ????? ???? OM 若 M 是 ?F 角平分线上一点,且 则 的取值范围是 . PF F M ? MP ? 0 1 2 1
16. 已知 P 是椭圆

三、解答题:共 70 分,解答应写出说明文字,证明过程或演算步骤.
17.(本小题满分 12 分) 在锐角 ?ABC 中,内角 A , B , C 所对的边分别为 a , b , c .已知 cos 2C ? ? (1)求 sin C ; (2)当 c ? 2a ,且 b ? 3 7 ,求 a .

3 4

18.(本小题满分 12 分)

D , E , F 分别为线段 AC , A1 A , 如图,在正三棱柱 ABC ? A1B1C1 中, A 1 A ? 2 AC ,

C1B 的中点.
(1)求证: EF ∥平面 ABC (2)求证: C1E ? 平面 BDE .

3

19.(本小题满分 12 分) 为了解某地区中学生的身体发育状况,拟采用分层抽样的方法从甲、乙、丙三所中学抽取 6 个教学班进行调查,已知甲、乙、丙三所中学分别有 12,6,18 个教学班. (1)求从甲,乙,丙三所中学中分别抽取的教学班的个数; (2)若从抽取的 6 个教学班中随机抽取 2 个进行调查结果的对比,求这 2 个教学班中至少 有 1 个来自甲学校的概率.

20.(本小题满分 12 分) 已知函数 f ( x) ? ln x ? ax2 ? (a ? 2) x . (1)若 f ( x ) 在 x ? 0 处取得极值,求 a 值;
2 (2)求函数 y ? f ( x) 在 ? ?a , a ? ? 上的最大值.

21. (本小题满分 12 分) 在平面直角坐标系 xOy 中, 已知关于坐标原点中心对称的椭圆 C 的 长轴长为 2 2 ,一个焦点的坐标为(1,0) (1)求椭圆 C 的标准方程; (2)设直线 l : y ? kx 与椭圆 C 交于 A , B 两点,点 P 为椭圆的右顶点. (ⅰ)若直线 l 的斜率 k ? 1 ,求 ?ABP 的面积; (ⅱ)若直线 AP , BP 的斜率分别为 k1 , k2 ,求证 k1 ? k2 为定值.

4

请考生在 22, 23, 24 三题中任选一题作答, 如果多做, 则按所做的第一题记分, 作答时用 2 B 铅笔在答题卡上把所选题目对应的题号涂黑. 22.(本小题满分 10 分)选修 4-1:几何证明选讲 如图,直线 PA 为圆 O 的切线,切点为 A ,直径 BC ? OP ,连接 AB 交 PO 于点 D . (1)证明: PA ? PD ;

OC . (2)求证: PA?AC ? AD?

23.(本小题满分 10 分)选修 4-4:坐标系与参数方程 在极坐标系中,已知曲线 L : ? sin 平行于 ? ?
2

? ? 2cos? ,过点 A(5,? ) ( ? 为锐角且 tan ? ?

?
4

3 )作 4

( ? ? R )的直线 l ,且 l 与曲线 L 分别交于 B , C 两点.

(1)心极点为原点,极轴为 x 轴的正半轴,取极坐标相同单位长度,建立平面直角坐标系, 写出曲线 L 和直线 l 的普通方程. (2)求 BC 的长.

24.(本小题满分 10 分)选修 4-5:不等式选讲 设函数 f ( x) ? x ?1 ? x ? a ( a ? R ) (1)当 a ? 4 ,求不等式 f ( x) ? 5 的解集; (2)若 f ( x) ? 4 对 x ? R 恒成立,求 a 的取值范围.

5


搜索更多“2013-2014年焦作市高三第一次模拟考试数学(文)试卷”

网站地图

All rights reserved Powered by 伤城文章网 5xts.com

copyright ©right 2010-2021。
伤城文章网内容来自网络,如有侵犯请联系客服。zhit325@126.com