伤城文章网 > 数学 > 山东省临沂市临沭县2017-2018学年高三上学期期末数学试卷(文科) Word版含解析

山东省临沂市临沭县2017-2018学年高三上学期期末数学试卷(文科) Word版含解析


2017-2018 学年山东省临沂市临沭县高三 (上) 期末数学试卷 (文 科) 最新试卷十年寒窗苦,踏上高考路,心态放平和,信心要十足,面对考试卷,下笔如有神,短信送祝福,愿你能高中,马到功自成,金榜定题名。 一、选择题: (本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只 有一项是最符合题目要求的. ) 1.已知全集为 R,集合 A={x|( )x≤1},B={x|x≥2},A∩(?RB)=( A.[0,2) B.[0,2] 2.复数 z= C. (1,2) D. (1,2] ) ) 的共轭复数是( A.2+i B.2﹣i C.1+2i D.1﹣2i 3.下列说法中正确的是( ) A.命题“若 x>y,则﹣x<﹣y”的逆命题是“若﹣x>﹣y,则 x<y” B.若命题 P:? x∈R,x2+1>0,则¬P:? x∈R,x2+1>0 C.设 l 是一条直线,α,β 是两个不同的平面,若 l⊥α,l⊥β,则 α∥β D.设 x,y∈R,则“(x﹣y)?x2<0”是“x<y”的必要而不充分条件 4.设变量 x,y 满足约束条件 ,则目标函数 z=x+2y 的最小值为( ) A.2 5.已知 A. B.3 C.4 D.5 ,则向量 的夹角为( ) B. C. D. , 若 x+2y>m2+2m 恒成立, 则实数 m 的取值范围是 ( ) 6. x>0, y>0, 已知: 且 A. B. C. (﹣∞,﹣2]∪[4,+∞) (﹣∞,﹣4]∪[2,+∞) (﹣2,4) 4,2) 7.运行如图所示程序框,若输入 n=2015,则输出的 a=( ) D. (﹣ A. B. C. D. ) 8.函数 f(x)=3cosx?ln(x2+1)的部分图象可能是( A. B. C. D. 9.一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是( ) A.1 B.2 C.3 D.4 ,不等式 sinx?f(x)<cosx?f′(x)恒成立,则下列不等式错误的 10.对任意 是( A. D. ) B. C. 二、填空题:本大题共 5 小题,每小题 5 分,共 25 分.请将答案填写到答题卡的相应位置. 11.已知圆 C 过点(﹣1,0) ,且圆心在 x 轴的负半轴上,直线 l:y=x+1 被该圆所截得的弦 长为 2 ,则圆 C 的标准方程为______. 12.在区间[﹣ , ]上随机取一个数 x,则 sinx+cosx∈[1, ]的概率是______. 13.在△ABC 中,角 A,B,C 的对边分别为 a,b,c,已知 a2﹣b2=bc,sinC=2sinB,则角 A 为______. 14. f x) f x+3) =f ①对任意 x, ②当 定义在 R 上的奇函数 ( 满足: 都有 ( (x) 成立; 时,f(x)= |,则方程 f(x)= 在区间[﹣4,4]上根的个数是______. 15.F1、F2 为双曲线 C: (a>0,b>0)的焦点,A、B 分别为双曲线的左、 右顶点, 以 F1F2 为直径的圆与双曲线的渐近线在第一象限的交点为 M, 且满足∠MAB=30°, 则该双曲线的离心率为______. 三、解答题: (本大题共 6 小题,满分 75 分.解答应写出文字说明证明过程或演算步骤) 16.某公司有男职员 45 名,女职员 15 名,按照分层抽样的方法组建了一个 4 人的科研攻关 小组. (1)求某职员被抽到的概率及科研攻关小组中男、女职员的人数; (2)经过一个月的学习、讨论,这个科研攻关组决定选出两名职员做某项实验,方法是先 从小组里选出 1 名职员做实验,该职员做完后,再从小组内剩下的职员中选一名做实验,求 选出的两名职员中恰有一名女职员的概率; (3)实验结束后,第一次做实验的职员得到的实验数据为 68,70,71,72,74,第二次做 实验的职员得到的实验数据为 69,70,70,72,74,请问哪位职员的实验更稳定?并说明 理由. 17.函数 f(x)=Asin(ωx+φ) (其中 数 f(x)的图象向右平移 )的图象如图所示,把函 个单位,再向下平移 1 个单位,得到函数 y=g(x)的图象. (Ⅰ)求函数 y=g(x)的表达式; B, C 的对边分别为 a, b, c, g =0. (Ⅱ) 已知△ABC 内角 A, 且 c=3, (C) 若向量 与 共线,求 a,b 的值. 18.如图,△ABC 是边长为 4 的等边三角形,△ABD 是等腰直角三角形,AD⊥BD,平面 ABC⊥平面 ABD,且 EC⊥平面 ABC,EC=2. (1)证明:DE∥平面 ABC; (2)证明:AD⊥BE. 19.已知数列{an}是首项为正数的等差数列,数列 (Ⅰ)求数列{an}的通项公式; (Ⅱ)设 ,求数列{bn}的前 2n 项和 T2n. 的前 n 项和为 . 20.已知椭圆 + =1(a>b>0)的离心率 e= ,直线 y=x+1 经过椭圆 C 的左焦点. (I)求椭圆 C 的方程; 0) B 两点, (Ⅱ) 若过点 M (2, 的直线与椭圆 C 交于 A, 设 P 为椭圆上一点, 且满足 =t (其中 O 为坐标原点) ,求实数 t 的取值范围. 21.设函数 . + (Ⅰ)求 f(x)的单调区间; (Ⅱ)若 f(x)在 存在零点,求 k 的取值范围. 2017-2018 学年山东省临沂市临沭县高三(上)期末数学 试卷(文科) 参考答案与试题解析 一、选择题: (本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只 有一项是最符合题目要求的. ) 1.已知全集为 R,集合 A={x|( )x≤1},B={x|x≥2},A∩(?RB)=( A.[0,2) B.[0,2] C. (1,2) D. (1,2] ) 【考点】交、并、

搜索更多“山东省临沂市临沭县2017-2018学年高三上学期期末数学试卷(文科) Word版含解析”

网站地图

All rights reserved Powered by 伤城文章网 5xts.com

copyright ©right 2010-2021。
伤城文章网内容来自网络,如有侵犯请联系客服。zhit325@126.com