伤城文章网 > 数学 > 安徽池州一中2014届高三第一次月考数学文科

安徽池州一中2014届高三第一次月考数学文科


池州一中 2014 届高三第一次月考

数学(文)试题
第Ⅰ卷 (选择题 共 50 分)
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只 有一项是符合题目要求的. ⒈ 若复数 z 满足 i ? z ? ? ?1 ? i ? ,则 z 的虚部为( A. ? i
1 2

1 2

) C. ) B.必要不充分条件 D.既不充分也不必要条件 )
1 2

B. i
3

1 2

D. ?

1 2

⒉ 设 x ? R ,则“ x ? 1 ”是“ x ? x ”的( A.充分不必要条件 C.充要条件

⒊ 已知 A ? ? x ? N * x ? x ? 3? ? 0? ,函数 y ? ln( x ? 1) 的定义域为集合 B ,则 A I B ? (
A.

?1,2,3?

B.

?2,3?

C.

?1,3?

D. ?1,3?

⒋ 已知向量 a ? (1,2) , b ? (1,0) , c ? (3,4) .若 (b ? ?a) ? c ,则实数 ? 的值为( A.
1 2


3 11

B.

3 5 1 3

C. ?

11 3

D. ?

⒌ 等差数列 ?an ? 中的 a1 、 a4025 是函数 f ( x) ? x3 ? 4x2 ? 6x ? 1 的极值点,则 log2 a2013 ? ( A. 2 B. 3
?x ? y ? 3



C. 4

D. 5 )

⒍ 设变量 x, y 满足约束条件 ? x ? y ? ?1 ,则目标函数 z ? 2 x ? 3 y 的最小值为( ?
?2 x ? y ? 3 ?

A. 6

B. 7

C. 8

D. 23

⒎ 某几何体的三视图如图所示,则该几何体的表面积为 ( A. )
2?

B. 2 2? D. ? 2 2 ? 2 ? ?
x?0 ?x ? 2 ,则不等式 f ( x) ? x2 的解集 ?x ? 2 x ? 0 ?
数学(文)试题共(四)页 第 1 页

C. ? 2 2 ? 1? ? ⒏ 已知函数 f ( x) ? ?

为(

) B. [?2, 2] C. [?2, 1] D. [?1 2] ,

A. [?11] ,

⒐ 袋中共有 6 个除了颜色外完全相同的球,其中有 1 个红球,2 个白球和 3 个黑球.从袋 中任取两球,两球颜色不同的概率为( .. A.
4 15

) C.
2 5

B.

1 3

D.

11 15

⒑ 定义在 R 上的偶函数 f ( x) , 满足 f ( x ? 3) ? f ( x) ,f (2) ? 0 , 则函数 y ? f ( x) 在区间 ? 0, 6 ? 内 零点的个数为( A. 2 个 ) B. 4 个

C. 6 个

D.至少 4 个

第Ⅱ卷(非选择题 共 100 分)
二、填空题:本大题共 5 小题,每小题 5 分,共 25 分. 把答案填在答题卡的相应位置. 11. 求值: log3 27 ? lg 25 ? lg 4 ? 7log 2 ? ? ?2013? ?
7

0

. .

12. 阅读程序框图 (如图所示) 若输入 a ? 60.7 , ? 0.76 , ? log0.7 6 ,则输出的数是 , b c 13. 已知 x ? 0 ,由不等式 x ? ? 2 x ? ? 2 ,
1 x 1 x

开始

4 x x 4 x x 4 x ? 2 ? ? ? 2 ? 33 ? ? 2 ? 3 , x 2 2 x 2 2 x 27 x x x 27 x x x 27 x ? 3 ? ? ? ? 2 ? 4 4 ? ? ? 2 ? 4 ,?.在 x x 3 3 3 x 3 3 3 x

输入 a,b,c

?0条
a>b 且 a>c?
否 ib>c? 否 i 输出 c 结束 是 i 输出 b 是 i 输出 a

件下,请根据上述不等式归纳出一个一般性的不等 式 .

14. 已知圆 C 的圆心是直线 x ? y ? 1 ? 0 与 x 轴的交 点,且圆 C 与直线 x ? y ? 3 ? 0 相切.则圆 C 的方程 为 .

15.已知函数 f ( x) ? cos x ? sin x ,给出下列五个说法:
? 12 ? 4

1921? ? 1 ? ? ① f? ②若 f ( x1 ) ? ? f ( x2 ) , x1 ? ? x2 ; f ( x) 在区间 ?? , ? 上单调递增; ④ 则 ③ ? ?? ; ? ?

? 6 3? 3? 1 将函数 f ( x) 的图象向右平移 个单位可得到 y ? cos2x 的图象;⑤ f ( x) 的图象关于点 4 2 ? ? ? . ? ? ,0 ? 成中心对称.其中正确说法的序号是 ? 4 ?
数学(文)试题共(四)页 第 2 页

三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,演算步骤或证明过程. 解 答写在答题卡上的指定区域内. 16.(本小题满分 12 分) 已知函数 f ( x) ?
3 1 sin 2 x ? cos2 x ? , x ? R . 2 2

(Ⅰ)求函数 f ( x) 的最小值和最小正周期; (Ⅱ)设 ?ABC 的内角 A 、 B 、C 的对边分别为 a 、b 、 c ,满足 c ? 3 , f (C ) ? 0 且 sin B ? 2sin A ,求 a 、 b 的值.

17.(本小题满分 12 分) 如图, ABCD 是边长为 2 的正方形, ED ⊥平面 ABCD , ED ? 1 , EF // BD 且 2EF ? BD . (Ⅰ)求证:平面 EAC ⊥平面 BDEF ; (Ⅱ)求几何体 ABCDEF 的体积.

18.(本小题满分 13 分) 数列 ?an ? 的前 n 项和为 S n ,Sn ? an ? ? n2 ? n ? 1(n ? N*) . (Ⅰ)设 bn ? an ? n ,证明:数列 ?bn ? 是等比数列; (Ⅱ)求数列 ?nbn ? 的前 n 项和 Tn .
1 2 3 2

19.(本小题满分 12 分) 某校从参加高三模拟考试的学生中随机抽取 60 名 学 生 , 将 其 数 学 成 绩 (均 为 整 数 )分 成 六 组 [90,100),[100,110),…,[140,150)后得到如下部 分频率分布直方图.观察图形的信息,回答下列 问题.
数学(文)试题共(四)页 第 3 页

(Ⅰ)求分数在[120,130)内的频率; (Ⅱ)若在同一组数据中,将该组区间的中点值(如:组区间[100,110)的中点值为 100+110 =105)作为这组数据的平均分,据此估计本次考试的平均分; 2 (Ⅲ)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为 6 的样本,将 该样本看成一个总体,从中任取 2 人,求至多有 1 人在分数段[120,130)内的概 率.

20.(本小题满分 13 分) 已知椭圆 C :

x2 y 2 2 ? 2 ? 1? a ? b ? 0 ? 的离心率为 ,左焦点为 F (?2,0) . 2 2 a b

(Ⅰ)求椭圆 C 的方程; (Ⅱ)若直线 y ? x ? m 与曲线 C 交于不同的 A 、 B 两点,且线段 AB 的中点 M 在圆

x 2 ? y 2 ? 1 上,求 m 的值.

21.(本小题满分 14 分) 已知函数 f ( x) ? x ? ax ? x ? 2 ( a ? R ).
3 2

(Ⅰ)当 a ? 1 时,求函数 f (x) 的极值; (Ⅱ)若对任意 x ? R ,不等式 f '( x) ?| x | ?

4 恒成立,求实数 a 的取值范围. 3

池州一中 2014 届高三年级第一次月考
数学(文)试题共(四)页 第 4 页

数学(文)试题答案
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分. 题号 答案 ⒈ C ⒉ A ⒊ B ⒋ D ⒌ A ⒍ B ⒎ B ⒏ A ⒐ D ⒑ D

⒈【解析】由 i ? z ? ?
3

1 1 1? i 1 1 ? ? ? i ,从而虚部 ,选 C. ?1 ? i ? ,得 z ? ? 2 2 2i 2 2

⒉【解析】 因为 x ? x ,解得 x ? 0,1, ?1 ,显然条件表示的集合小,结论表示的集合大, 由集合的包含关系,选 A. ⒊【解析】化简集合 A ? ?x ? N * x ? x ? 3? ? 0??x ? N * 0 ? x ? 3? ? ?1,2,3? , B ? ?x x ? 1 ? 0? ? ?x x ? 1? , 则 A I B ? ?2,3? ,选 B. ⒋【解析】∵ (b ? ? a ) ? c ,∴ (b ? ?a) ? c ? 0 ,即 b ?c ? ? ?c ? 0 ,∴ 3 ? ? 3 ? 8 ? ? ? 0 , a 解得 ? ? ?

3 ,选 D. 11
1 3

⒌ 【解析】f ?( x) ? x2 ? 8x ? 6 .因为 a1 、a4025 是函数 f ( x) ? x3 ? 4x2 ? 6x ? 1 的极值点, 所以 a1 、a4025 是 方 程 x2 ? 8x ? 6? 0的 两 实 数 根 , 则 a1 ? a 4 0 ?58 . 而 ?an ? 为 等 差 数 列 , 所 以 2
a1 ? a4025 ? 8 ? 2a2013 ? 8 ,即 a2013 ? 4 ,从而 log2 a2013 ? 2 ,选 A.

⒍【解析】由已知作出可行域为一个三角形区域,得到三个交点 (2, , , ,当直线 1),(1 2),(4 5)

1) 2 x ? 3 y ? 0 平移通过点 (2, 时,目标函数值最小,此时 z ? 2 ?1 ? 3? 2 ? 7 .
【考点定位】本试题考查了线性规划的最优解的运用以及作图能力. ⒎【解析】由图知,原几何体是两个相同圆锥底面重合的一个组合体, R ? 1 , h ? 1 ,

l ? 2 ,则表面积为 S ? 2 ? ? ?1? 2 ? 2 2? ,选 B.
⒏【答案】A. ⒐ 【 解 析 】 令 红 球 、 白 球 、 黑 球 分 别 为 A, B1 , B2 , C1 , C2 , C3 , 则 从 袋 中 任 取 两 球 有

? A, B1 ? , ? A, B2 ? , ? A, C1 ? , ? A, C2 ? , ? A, C3 ? , ? B1 , C1 ? , ? B1 , C2 ? , ? B1 , C3 ? , ? B1 , B2 ? ,

? B2 , C1 ? , ? B2 , C2 ? , ? B2 , C3 ? ,? C1, C2 ? , ? C1, C3 ? , ? C2 , C3 ? 共 15 种取法,其中两球颜色相同
数学(文)试题共(四)页 第 5 页

有 ? B1 , B2 ? , ? C1 , C2 ? , ? C1 , C3 ? , ? C2 , C3 ? 共 4 种取法,由古典概型及对立事件的概率公式 可得 p ? 1 ?

4 11 ? . 15 15

⒑【解析】∵ f ( x) 是定义在 R 上的偶函数,且周期是 3, f (2) ? 0 ,∴ f (?1) ? 0 ,即

() () () () f (1) ? 0 .∴ f 5 ? f 2 ? 0 , f 4 ? f 1 ? 0 ,所以方程 f ( x) ? 0 在 ? 0, 6 ? 内,至少有
4 个解,选 D. 二、填空题:本大题共 5 小题,每小题 5 分,共 25 分. 题号 答案 ⒒ ⒓ ⒔ ⒕ ⒖ ①④

13 2

6

0.7

nn x ? n ? n ? 1? n ? N * ? x
0

( x ? 1)2 ? y 2 ? 2

⒒【解析】 log3

27 ? lg 25 ? lg 4 ? 7log7 2 ? ? ?2013? ?

3 13 ? 2lg 5 ? 2lg 2 ? 2 ? 1 ? . 2 2

⒓【解析】程序框图的功能是:输出 a,b,c 中最大的数, ∵ a>1 , 0< b<1 , c< 0 ,所以输出的数为 6
0.7

.

⒔【解析】根据题意,分析所给等式的变形过程可得,先对左式变形,再利用基本不等式 化简.消去根号,得到右式,则

x?

nn x x x nn x x x nn ? ? ? L ? ? n ? ? n ? 1? ? n ?1? ? ? L ? ? n ? n ? 1 . xn n n n x n n n x

( ) ⒕【解析】令 y=0 得 x=-1,所以直线 x-y+1=0,与 x 轴的交点为 C ? 1, 0 . ( ) 因 为直 线 x ? y ? 3 ? 0 与圆 C 相 切 ,所以 圆心 C ? 1, 0 到 直线 的距 离等于 半径 ,即

r?

| ?1 ? 0 ? 3 | ? 2 ,所以圆 C 的方程为 ( x ? 1)2 ? y 2 ? 2 . 2
2
? 12 ? ? 12 ? 2 6 4

1 1921? ? ?? ? 1 ? 1 ⒖【解析】 f ( x) ? cos x ? sin x ? sin 2x .①正确, f ? ? ? ? f ? ? ? sin ? ;②错误:由

f ( x1 ) = - f ( x2 ) = f (- x2 ) ,知 x1 = - x2 + 2kp 或 x1 = p + x2 + 2k p (k
令?

Z ) ;③错误:

?
2

? 2k? ? 2 x ? ?

?
2

? 2k? ,得 ?

?
4

? k? ? x ?

?
4

? k? ? k ? Z ? ,由复合函数性质知

数学(文)试题共(四)页 第 6 页

? ? ? ? f ( x ) 在 每 一 个 闭 区 间 ? ? ? k? , ? k? ? ? k ? Z ? 上 单 调 递 增 , 但 4 ? 4 ?
? ? ? ?? ? ? ? ?? 6 , 3 ? ? ?? 4 ? k? , 4 ? k? ? ? k ? Z ? ,故函数 ? ? ? ?

f ( x) 在 ?? ? , ? ? 上不是单调函数;④错误:将函 ? ?
? 6 3?



f ( x)















3? 4













1 3? ? 1 3? ? 1 ? ? y ? sin 2 ? x ? ? ? sin ? 2 x ? ? ? cos 2 x ;⑤错误:函数的对称中心的横坐标 2 4 ? 2 ? 2 ? 2 ?
满足 2x0 ? k? ,解得 x0 ?

k? ? k? ? , 0 ? ? k ? Z ? ,则点 ? ? ? ,0 ? 不是其 ,即对称中心坐标为 ? ? ? ? 4 ? 2 ? 2 ?

对称中心. 三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,演算步骤或证明过程. 解 答写在答题卡上的指定区域内. ⒗ (本小题满分 12 分) 【解析】(Ⅰ) f ( x ) ?

3 1 ? cos 2 x 1 ? sin 2 x ? ? ? sin(2 x ? ) ? 1 ,????3 分 2 2 2 6 2? 则 f ( x ) 的最小值是 ?2 , 最小正周期是 T ? ? ? ;????6 分 2

(Ⅱ) f (C ) ? sin(2C ?

?

6

) ? 1 ? 0 ,则 sin(2C ?

?

0 ? C ? ? , 0 ? 2C ? 2? ,所以 ?
所以 2C ?

?
6

? 2C ?

?
6

6
?

) ? 1 ? 0 ,????7 分
11? , 6

?

3 6 2 因为 sin B ? 2sin A ,所以由正弦定理得 b ? 2a ,??①????10 分
由余弦定理得 c ? a ? b ? 2ab cos
2 2 2

?

?

,C ?

?

,????9 分

?

3

,即 c ? a ? b ? ab ? 3 ??②????11
2 2 2

分 由①②解得: a ? 1 , b ? 2 .????12 分

⒘ (本小题满分 12 分) 【解析】 (Ⅰ)∵ ED⊥平面 ABCD ,AC ∵ ABCD 是正方形,∴ BD⊥AC, 分 ∴ AC⊥平面 BDEF.

平面 ABCD ,∴ ED⊥AC.????2 分 ????4

????6
数学(文)试题共(四)页 第 7 页

分 又 AC?平面 EAC,故平面 EAC⊥平面 BDEF. DO,∴ 四边形 EFOD 是平行四边形. (Ⅱ)连结 FO,∵ EF 由 ED⊥平面 ABCD 可得 ED⊥DO, ∴ 四边形 EFOD 是矩形.????8 分 方法一:∴ FO ∥ ED , 而 ED⊥平面 ABCD ,∴ FO ⊥平面 ABCD . ∵ ABCD 是边长为 2 的正方形,∴ OA ? OC ?

2。

2

由(Ⅰ)知,点 A 、 C 到平面 BDEF 的距离分别是 OA 、 OC , 从

V?

A?

2

1 3

V ;

E

?

方法二:∵ 平面 EAC⊥平面 BDEF. ∴ 点 F 到平面 ACE 的距离等于就是 Rt△EFO 斜边 EO 上的高, 且高 h ?

EF ? FO 1? 2 6 .????10 分 ? ? OE 3 3

∴几何体 ABCDEF 的体积 = =2. ????12 分 ⒙(本小题满分 12 分)

1 3 【解析】 (Ⅰ)因为 an ? S n ? ? n 2 ? n ? 1 , 2 2
所以

1 ① 当 n ? 1 时, 2a1 ? ?1 ,则 a1 ? ? ,????????????1 分 2 1 3 ② 当 n ≥ 2 时, an ?1 ? S n ?1 ? ? (n ? 1) 2 ? (n ? 1) ? 1 ,????????2 分 2 2 所以 2an ? an ?1 ? ? n ? 1 ,即 2(an ? n) ? an ?1 ? n ? 1 ,????????4 分
所以 bn ?

1 1 bn ?1 (n ≥ 2) ,而 b1 ? a1 ? 1 ? ,????????5 分 2 2
1 1 ?1? ,公比为 的等比数列,所以 bn ? ? ? .?????6 分 2 2 ?2?
n

所以数列 ?bn ? 是首项为

数学(文)试题共(四)页 第 8 页

(Ⅱ)由 (Ⅰ)得 nbn ? 所以 ① Tn ?

1 2 3 4 n ?1 n ? 2 ? 3 ? 4 ? .......... ? n ?1 ? n , 2 2 2 2 2 2 2 3 4 n ?1 n ② 2Tn ? 1 ? ? 2 ? 3 ? .......... ? n ? 2 ? n ?1 ,?????8 分 2 2 2 2 2 1 1 1 n ②-①得: Tn ? 1 ? ? 2 ? ...... ? n ?1 ? n ,?????10 分 2 2 2 2 n ?1? 1? ? ? ? 2 ? ? n ? 2 ? n ? 2 .??????12 分 Tn ? 1 2n 2n 1? 2
⒚(本小题满分 12 分) 【 解 析 】 ( Ⅰ ) 分 数 在 [120,130) 内 的 频 率 为

n . 2n

1 ? (0.1 ? 0.15 ? 0.15 ? 0.25 ? 0.05) ? 1 ? 0.7 ? 0.3 ;
?????? ??2 分 (Ⅱ)估计平均分为

x ? 95 ? 0.1 ? 105 ? 0.15 ? 115 ? 0.15+ ? 0.3+ ? 0.25 ? 145 ? 0.05 ? 121 .?? ? 125 135
??5 分 (Ⅲ)由题意,[110,120)分数段的人数为 60×0.15=9(人).[120,130)分数段的人数为 60×0.3 18(人). ?7 分 ∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为 6 的样本, ∴ 需 在 [110,120) 分 数 段 内 抽 取 2 人 , 并 分 别 记 为 m 、 = ???????

n;


????????8 分 ????????9

在[120,130)分数段内抽取 4 人, 并分别记为 a 、 、 、 ; b c d

设“从样本中任取 2 人,至多有 1 人在分数段[120,130)内”为事件 A,则基本事件共有

(m,n) ,

(m,a), , ,d ),,a), ,,d ),,b), ,,d ) ? (m (n ? (n (a ? (c
数学(文)试题共(四)页 第 9 页



15

种. 则 事

??????10 分 件

A









本 ,



件 共

有 9

(m,n), ,a), ,b), ,c), ,d ),,a),,b),,c) (m (m (m (m (n (n (n
种. 11 分 ∴

(n,d )

????????

P ? A? ?
?12 分

9 3 ? . 15 5

???????

⒛(本小题满分 13 分) 【解析】 (Ⅰ)由题意得

c 2 ,c ? 2 ? a 2

???2 分

解得 ?

?a ? 2 2 ?b ? 2

???4 分

x2 y2 ? ?1 所以椭圆 C 的方程为: 8 4

???6 分

(Ⅱ)设点 A 、 B 的坐标分别为 ( x1 , y1 ) , ( x 2 , y 2 ) ,线段 AB 的中点为 M ? x0 , y0 ? ,

? x2 y2 ?1 ? ? 由? 8 ,消去 y 得 3x 2 ? 4mx ? 2m 2 ? 8 ? 0 4 ?y ? x ? m ?
2 ∵ ? ? 96 ? 8m ? 0 ,∴ ?2 3 ? m ? 2 3

???8 分

???9 分

∴ x0 ?

x1 ? x2 2m m ?? , y0 ? x0 ? m ? 2 3 3
2 2

???10 分

2 2 ∵点 M ? x0 , y0 ? 在圆 x ? y ? 1 上,∴ ? ?

3 5 ? 2m ? ? m ? ??13 分 ? ? ? ? ? 1 ,即 m ? ? 5 ? 3 ? ?3?

21.(本小题满分 14 分) 【解析】 (Ⅰ)当 a ? 1 时, f ( x) ? x ? x ? x ? 2
3 2

数学(文)试题共(四)页 第 10 页

1? ? f '( x) ? 3x 2 ? 2 x ? 1 ? 3( x ? 1) ? x ? ? ,????????2 分 3? ? 1 令 f '( x) ? 0 ,解得 x1 ? ? , x2 ? 1 . 3 1 1 当 f '( x) ? 0 时,得 x ? 1 或 x ? ? ;当 f '( x) ? 0 时,得 ? ? x ? 1 .????4 分 3 3 当 x 变化时, f '( x) , f ( x) 的变化情况如下表:

x
f '( x) f ( x)

1 (??, ? ) 3
+

?

1 3

1 ( ? ,1) 3

1 0 极小

(1, ??)
+

0 极大

?
]

Z

Z

∴当 x ? ? 时,函数 f ( x) 有极大值, f ( x) 极大 =f ? ? ? ?

? 1 ? 59 ; ????5 分 ? 3 ? 27 当 x ? 1 时,函数 f ( x) 有极大值, f ( x) 极小 =f ?1? ? 1 , ??????6 分

1 3

( Ⅱ ) ∵ f '( x) ? 3x ? 2ax ? 1 , ∴ 对 ?x ? R , f ?( x) ? x ?
2

4 恒成立,即 3

4 3x 2 ? 2a x? 1 ? x ?对 ?x ? R 恒成立, ?????????????7 分 3 1 1 2 ①当 x ? 0 时,有 ? 2a ? 1? x ? 3x ? ,即 2a ? 1 ? 3x ? 对 ?x ? 0 恒成立,??9 分 3 3x 1 1 1 ? 2 3x ? ? 2 ,当且仅当 x ? 时等号成立, ∵ 3x ? 3x 3x 3 1 ∴ 2a ? 1 ? 2 ,解得 a ? ?????????????????11 分 2 1 1 2 ②当 x ? 0 时,有 ?1 ? 2a ? x ? 3 x ? ,即 1 ?2 a ?3 x ? 对 ?x ? 0 恒成立,?12 分 3x 3
∵3 x ?

1 1 1 ?2 3x? ? 2 ,当且仅当 x ? ? 时等号成立, 3x 3x 3

∴ 1 ? 2a ? 2 ,解得 a ? ? ③当 x ? 0 时, a ? R .

1 2

??????????????????13 分

综上得实数 a 的取值范围为 ? ?

? 1 1? , . ??????????????14 分 ? 2 2? ?

数学(文)试题共(四)页 第 11 页


搜索更多“安徽池州一中2014届高三第一次月考数学文科”

学习资料共享网 | 文档资料共享网 | 兰溪范文 | 酷我资料网 | 省心范文网 | 海文库

晓灵聚合阅读网 | 弘亮中文吧 | 薇歌中文阅读平台 | 好看的阅读网站 | 允晨阅读小屋网 | 寒天阅读平台 | 水彤中文网 | 雨彤平台 | 伟泽中文阅读之家 | 梓舒阅读吧 | 嘉谊阅读家 | 好看的阅读站 | 修文中文阅读吧 | 康复中文阅读网 | 颐真中文小说网 | 初柔看书网 | 小凝小说网 | 桂月阅读之家 | 沛文阅读吧 | 如风聚合网 | 鑫鹏中文吧 | 兴学中文阅读平台 | 映阳中文看书网 | 淳雅阅读网 | 今雨阅读平台 | 又儿网 | 凝雨阅读网645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
网站地图

All rights reserved Powered by 伤城文章网 5xts.com

copyright ©right 2010-2021。
伤城文章网内容来自网络,如有侵犯请联系客服。3088529994@qq.com